엔엔에이치: 1. "Bonzyme"전체 효소 방법, 환경 친화적, 유해한 용매 잔류 물 제조 분말이 없습니다. 2. Bontac은 세계 최초로 고순도, 안정성 수준의 NMNH 분말을 생산하는 제조 업체입니다. 3. 독점적인 "Bonpure" 7단계 정제 기술, 고순도(최대 99%) 및 NMNH 분말 생산 안정성 4. 자체 소유 공장 및 NMNH 분말 제품의 고품질 및 안정적인 공급을 보장하기 위해 다수의 국제 인증을 획득했습니다. 5. 원스톱 제품 해결책 주문화 서비스를 제공하십시오
나드: 1. Bonzyme 전체 효소 방법, 환경 친화적, 유해한 용매 잔류 물 없음 2. 독점적인 Bonpure 7단계 정화 기술, 순도 98% 이상 3. 특별한 특허가 주어진 가공 결정 모양, 더 높은 안정성 4. 고품질을 보장하기 위해 여러 국제 인증을 획득했습니다. 5. 8개의 국내외 NADH 특허, 업계 선도 6. 원스톱 제품 해결책 주문화 서비스를 제공하십시오
나드: 1. "Bonzyme"전체 효소 방법, 환경 친화적, 유해한 용매 잔류 물 없음 2. 전 세계 1000+ 기업의 안정적인 공급업체 3. 독특한 "Bonpure"7 단계 정화 기술, 더 높은 제품 함량 및 더 높은 전환율 4. 안정되어 있는 제품 품질을 지키는 동결 건조 기술 5. 독특한 크리스탈 기술, 더 높은 제품 용해도 6. 자체 소유 공장 및 제품의 고품질 및 안정적인 공급을 보장하기 위해 여러 국제 인증을 획득했습니다.
엔엠: 1. "Bonzyme"전체 효소 방법, 환경 친화적, 유해한 용매 잔류 물 없음 2. 독점적 인 "Bonpure"7 단계 정화 기술, 고순도 (최대 99.9 %) 및 안정성 3. 산업 선도 기술: 15개의 국내외 NMN 특허 4. 자체 소유 공장 및 제품의 고품질 및 안정적인 공급을 보장하기 위해 여러 국제 인증을 획득했습니다. 5. 여러 생체 내 연구에 따르면 Bontac NMN은 안전하고 효과적입니다. 6. 원스톱 제품 해결책 주문화 서비스를 제공하십시오 7. 하버드 대학의 고명한 데이비드 Sinclair 팀의 NMN 원료 공급자
Bontac Bio-Engineering (Shenzhen) Co., Ltd.(이하 BONTAC)는 2012년 7월에 설립된 하이테크 기업입니다. BONTAC은 R&D, 생산 및 판매를 통합하고 효소 촉매 기술을 핵심으로, 코엔자임 및 천연 제품을 주요 제품으로 사용합니다. BONTAC에는 코엔자임, 천연 제품, 설탕 대체품, 화장품, 식이 보조제 및 의료 중간체를 포함하는 6가지 주요 제품 시리즈가 있습니다.
글로벌 리더로서증권 시세 표시기BONTAC은 중국 최초의 전체 효소 촉매 기술을 보유하고 있습니다. 우리의 보효소 제품은 건강 기업, 의학 & 아름다움, 녹색 농업, 생물 의학 및 다른 분야에서 널리 이용됩니다. BONTAC은 독립적인 혁신을 고수합니다.발명특허 170건. 전통적인 화학 합성 및 발효 산업과 달리 BONTAC은 친환경 저탄소 및 고부가가치 생합성 기술의 장점을 가지고 있습니다. 또한 BONTAC은 중국 최초의 지방 차원에 코엔자임 엔지니어링 기술 연구 센터를 설립했으며, 이는 광동성에서도 유일합니다.
앞으로 BONTAC은 친환경, 저탄소, 고부가가치 생합성 기술의 장점에 중점을 두고, 학계 및 업스트림/다운스트림 파트너와 생태학적 관계를 구축하여 합성 생물학 산업을 지속적으로 선도하고 인류의 더 나은 삶을 창조할 것입니다.
NMNH 분말 준비의 주요 방법에는 추출, 발효, 강화, 생합성 및 유기물 합성이 포함됩니다. 다른 제제와 비교하여, 전체 효소는 무공해, 높은 수준의 순도 및 안정성의 장점으로 인해 주류 방법이됩니다.
1, "Bonzyme"전체 효소 방법, 환경 친화적, 유해한 용매 잔류 물 제조 분말이 없습니다.
2, Bontac은 고순도, 안정성 수준에서 NMNH 분말을 생산하는 세계 최초의 제조업체입니다.
3, 독점적 인 "Bonpure"7 단계 정제 기술, 고순도 (최대 99 %) 및 NMNH 분말 생산의 안정성
4, 자체 소유 공장 및 NMNH 분말 제품의 고품질 및 안정적인 공급을 보장하기 위해 여러 국제 인증을 획득했습니다.
5, 원스톱 제품 솔루션 사용자 정의 서비스 제공
배양된 세포에 적용했을 때, NMNH는 "NMN에 필요한 것보다 10배 낮은 농도(5μM)에서 NAD+를 현저하게 증가시킬 수 있었기 때문에" NMN보다 더 효율적인 것으로 나타났습니다. 더욱이, NMNH는 500 μM 농도에서 "NAD+ 농도가 거의 10배 증가한 반면, NMN은 1mM 농도에서도 이 세포의 NAD+ 함량을 두 배로 늘릴 수 있었다"는 점에서 더 효과적인 것으로 나타났습니다.
흥미롭게도 NMNH는 NMN에 비해 더 빠르게 작용하고 효과가 더 오래 지속되는 것으로 보입니다. 저자에 따르면, NMNH는 "15분 이내에 NAD+ 수치의 현저한 증가"를 유도하고, "NAD+는 최대 6시간 동안 꾸준히 증가하여 24시간 동안 안정적으로 유지된 반면, NMN은 단 1시간 만에 정체기에 도달했는데, 이는 NAD+에 대한 NMN 재활용 경로가 이미 포화 상태였기 때문일 가능성이 가장 높다"고 합니다.
NMNH는 또한 동일한 농도로 투여되었을 때 다양한 조직에서 NAD+ 수치를 높이는 데 NMN보다 더 효과적인 것으로 입증되어 세포주에서 관찰된 결과를 확인했습니다. 이 연구에서 제시된 데이터는 또한 NAD+ 부스터가 다양한 모델의 급성 신장 손상으로부터 보호한다는 증거를 확증하며, NMNH가 세뇨관 손상을 줄이고 회복을 가속화하기 위해 다른 NAD+ 전구체에 대한 훌륭한 대안 중재로 자리매김합니다.
현재 NAD+ 인핸서 레퍼토리의 한계를 극복하기 위해서는 NAD+ 세포 내 풀에 더 뚜렷한 영향을 미치는 다른 분자가 필요합니다. 이로 인해 환원된 형태의 니코틴아미드 모노뉴클레오티드(NMNH)를 NAD+ 강화제로 사용하는 방법을 조사하게 되었습니다. 세포에서 이 분자의 역할에 대한 정보는 매우 부족합니다. 사실, NMNH를 생성하기 위해 단 하나의 효소 활성만이 설명되었습니다. 이것은 인간 peroxisomal Nudix hydrolase hNUDT1232 및 쥐 미토콘드리아 Nudt13의 NADH 디포스파타제 활성입니다.33 세포에서 NMNH는 니코틴아미드 모노뉴클레오티드 아데닐릴 전이효소(NMNAT)를 통해 NADH로 전환될 것이라고 가정되었습니다.34 그러나 Nudix diphosphatases에 의한 NMNH 생산과 NADH 합성을 위한 NMNATs의 사용은 모두 분리된 단백질을 사용하여 in vitro에서만 설명되었습니다. NMNH가 세포 NAD+ 대사에 어떻게 참여하는지는 아직 알려져 있지 않습니다.
먼저 공장을 검사합니다. 몇 차례의 심사 후 소비자를 직접 대면하는 NMNH 기업들은 브랜드 구축에 더 많은 관심을 기울인다. 따라서 좋은 브랜드의 경우 품질이 가장 중요하며 원료의 품질을 관리하는 첫 번째 방법은 공장을 검사하는 것입니다. Bontac 회사는 실제로 SGS의 caterias와 함께 고품질의 NMNH 분말을 제조합니다. 둘째, 순도를 테스트합니다. 순도는 NMN 분말의 가장 중요한 매개 변수 중 하나입니다. 고순도 NMNH를 보장할 수 없는 경우 나머지 물질은 관련 기준을 초과할 가능성이 있습니다. 첨부된 인증서에서 Bontac에서 생산하는 NMNH 분말의 순도가 99%에 달함을 알 수 있습니다. 마지막으로, 이를 증명하기 위해 전문적인 테스트 스펙트럼이 필요합니다. 유기 화합물의 구조를 결정하는 일반적인 방법에는 핵 자기 공명 분광법(NMR)과 고분해능 질량 분석법(HRMS)이 있습니다. 일반적으로 이 두 스펙트럼의 분석을 통해 화합물의 구조를 예비적으로 결정할 수 있습니다.
1. 소개 환원 코엔자임 II라고도 하는 니코틴아미드 아데닌 디뉴클레오티드 인산염 수소(NADPH)는 세포 항산화 시스템 및 지질 합성의 중요한 보조 인자로, 진성 당뇨병과 같은 대사 장애의 맥락에서 췌장 β 세포의 인슐린 저항성과 페롭토시스를 연결하여 대사 항상성을 유지하는 데 중심적인 역할을 합니다. 2. NADPH의 생물학적 역할 NADPH는 세포 대사에 필수적인 코엔자임으로 기능하며 ROS 제거, ROS 생산, 지방산 합성 및 콜레스테롤 합성과 같은 다양한 중요한 생물학적 과정에서 중추적인 역할을 합니다. 3. NADPH의 생합성 경로 NADPH의 세포 생산은 오탄당 인산염 경로(pentose phosphate pathway), 구연산 회로(citric acid cycle) 및 지방산 대사(fatty acid metabolism)를 포함한 여러 경로를 통해 촉진됩니다. NADPH 합성과 소비 사이의 동적 평형은 세포 산화환원 균형을 유지하고 다양한 생합성 반응을 가능하게 하는 데 필수적입니다. 4. 췌장 β세포의 인슐린 분비에서 NADPH의 역할 산화환원 반응과 대사 신호전달은 모두 NADPH가 중심적인 역할을 하는 췌장 β세포에서 인슐린 분비를 조절할 수 있습니다. 이는 대사 결합 인자 역할을 할 뿐만 아니라 β세포 무결성의 관리인 역할을 하여 대사 입력과 인슐린 출력 간의 상호 작용을 섬세하게 관리합니다. 5. 인슐린 저항성과 NADPH의 상호 작용 상당한 양의 증거에 따르면 NADPH는 인슐린 저항성 발병의 주요 원인인 산화 스트레스 및 염증 반응의 조절에 중요하다. 특히, NADPH는 NOX를 통한 ROS 생성과 관련이 있으며 새로운 지방산의 합성에도 사용되며, 이는 특히 비만으로 인한 만성 염증의 맥락에서 인슐린 저항성 발달에 기여합니다. 6. 당뇨병의 맥락에서 NADPH가 페롭토시스에 미치는 영향 췌장 β 세포에서 혈당 상승과 전염증성 사이토카인은 산화 스트레스와 철분 축적을 유발하여 지질 과산화를 촉진하여 페롭토시스를 촉진할 수 있습니다. 그 대가로 페롭토시스는 인슐린 분비와 베타 세포 질량을 감소시킬 수 있으며, 이는 당뇨병 진행에 기여합니다. 일반적으로 NADPH는 페롭토시스에서 이중 역할을 합니다. 한편으로는 NOX를 통해 ROS 생성을 촉진할 수 있습니다. 한편, 글루타치온 재생을 통해 항산화 방어를 지원할 수 있습니다. 당뇨병의 맥락에서 NADPH는 주로 NOX의 향상된 활성과 친화력으로 인해 페롭토시스로 이어지는 과정을 촉진할 수 있지만 검증을 위한 추가 연구가 필요합니다. 7. 결론 NADPH는 대사 장애, 특히 인슐린 저항성 및 페롭토시스의 복잡한 환경에서 중요한 역할을 합니다. NADPH 관련 경로를 조절하면 대사 장애 치료를 위한 새로운 기회가 열릴 수 있습니다. 참조 문동오. "NADPH 역학: 진성 당뇨병에서 인슐린 저항성과 β세포 페롭토시스의 연결." 분자 과학의 국제 저널, vol. 25,1, 342. 2023년 12월 26일, doi:10.3390/ijms25010342 BONTAC NADPH의 생산 장점 및 특징 BONTAC은 NADPH의 생합성에 대한 풍부한 R&D 경험과 첨단 기술을 보유하고 있습니다. Bonzyme 전체 효소 방법을 채택하여 유해한 용매 잔류 물이없는 환경 친화적입니다. NADPH의 순도는 최대 95%에 달할 수 있으며, 이는 독점적인 Bonpure 7단계 정제 기술의 이점을 누릴 수 있습니다. BONTAC은 자체 소유 공장을 보유하고 있으며 고품질의 안정적인 제품 공급을 보장할 수 있는 다수의 국제 인증을 획득했습니다. BONTAC은 국내외 4개의 NADPH 특허를 보유하고 있으며 업계를 선도하고 있습니다. 면책 조항 이 기사는 학술지의 참고 문헌을 기반으로 합니다. 관련 정보는 공유 및 학습 목적으로만 제공되며 의학적 조언 목적을 나타내지 않습니다. 침해 사항이 있는 경우 작성자에게 삭제 여부를 알려주시기 바랍니다. 이 기사에 표현된 견해는 BONTAC의 입장을 나타내지 않습니다. BONTAC은 어떠한 경우에도 본 웹사이트의 정보 및 자료에 대한 귀하의 의존으로 인해 직간접적으로 발생하거나 발생하는 모든 청구, 손해, 손실, 비용, 비용 또는 책임(이익 손실, 영업 중단 또는 정보 손실에 대한 직간접적인 손해를 포함하되 이에 국한되지 않음)에 대해 어떠한 책임도 지지 않습니다.
소개 심혈관 질환(CVD)은 알츠하이머병과 당뇨병을 능가하는 막대한 경제적 부담과 환자의 생명에 큰 위협을 가하고 있습니다. 전 세계적으로 1,790만 명이 CVD로 사망하고 있으며, 간접 치료 비용은 연간 2,370억 달러에 달하며, 2035년까지 3,680억 달러로 증가할 것으로 예상됩니다. 산화된 니코틴아미드 아데닌 디뉴클레오티드 인산염(NADP+)/환원된 니코틴아미드 아데닌 디뉴클레오티드 인산염(NADPH) 산화환원 쌍의 결핍 또는 불균형은 CVD를 포함한 다양한 병리학적 상태와 관련이 있는 것으로 보고되었습니다. 심근세포에서 보조인자/전자 운반체로서의 NADP(H) 산화환원 커플 NADPH는 심근세포에서 글루타티온 환원효소(GR)와 티오레독신 환원효소(TR)의 필수 보조인자로, 세포 산화환원 항상성과 에너지 대사를 유지하는 데 중요한 역할을 합니다. GR은 산화된 글루타티온(GSSG)에서 글루타티온(GSH)의 재활용을 촉진하고 TR은 산화된 Trx-S2를 Trx-(SH)2로 환원시킵니다. 동시에 두 효소 모두 전자 공여체로 NADPH를 필요로 하고 NADP+로 산화합니다. 예를 들어, 세포질의 NOX와 미토콘드리아 전자 전달 사슬(ETC)에서 O2•-가 형성되면 세포질 CuZnSOD 및 미토콘드리아 MnSOD는 이를 H2O2로 환원시킵니다. GSH는 글루타티온 과산화효소(GPx)에 의해 H2O2를 물로 더 감소시키는 데 사용할 수 있습니다. Trx-(SH)2는 H2O2 제거에서 Prx에 대한 환원 등가물을 제공합니다. NADP(H)와 심혈관 병리학의 연관성 NADP(H)는 심혈관 병리학에서 두 가지 역할을 합니다. 한편으로는, NADPH가 감소하면 심각한 항산화 결핍과 활성산소의 세포 내 축적을 초래할 수 있으며, 이는 지질 과산화, 염증 및 혈관 기능 장애를 유발하여 궁극적으로 죽상동맥경화효소의 진행을 악화시킬 수 있습니다. 반면, NADPH 수치가 높으면 환원 스트레스를 유발하고 활성산소종(ROS) 생성을 향상시켜 심근 손상을 유발할 수 있습니다. 결론 세포 NADP(H) 함량의 변화는 특히 병든 심근에서 심장 기능의 중간 대사에 영향을 미칩니다. 심근세포에서 NADP+와 NADPH 사이의 균형을 유지하는 것은 CVD 치료에 매우 중요합니다. 결핍 또는 과도한 NADP(H) 수치는 세포 산화 환원 상태와 대사 항상성의 불균형을 초래하여 에너지 스트레스, 산화 환원 스트레스 및 궁극적으로 질병 상태를 초래할 수 있습니다. NADP(H)는 CVD에서 중요한 치료적 가치를 가지고 있습니다. 참조 Sun Y, Wu D, Hu Q. 신진대사의 NADP+/NADPH 및 심혈관 병리학과의 관계. Curr Med Chem. 2024년 2월 16일 온라인에 게시되었습니다. 도이 : 10.2174/0109298673275187231121054541 본탁 NADP(H) BONTAC은 2012년부터 코엔자임 및 천연 제품의 원료 R&D, 제조 및 판매에 전념해 왔으며, 자체 소유 공장, 170개 이상의 글로벌 특허, 의사와 석사로 구성된 강력한 R&D 팀을 보유하고 있습니다. BONTAC은 NADP(H)의 생합성에 대한 풍부한 R&D 경험과 첨단 기술을 보유하고 있습니다. Bonzyme 전체 효소 방법을 채택하여 유해한 용매 잔류 물이없는 환경 친화적입니다. NADP와 NADPH의 순도는 각각 최대 95%와 98%에 달할 수 있으며, 이는 독점적인 Bonpure 7단계 정제 기술의 이점을 누릴 수 있습니다. BONTAC은 자체 소유 공장을 보유하고 있으며 고품질의 안정적인 제품 공급을 보장할 수 있는 다수의 국제 인증을 획득했습니다. BONTAC은 국내외 4개의 NADPH 특허를 보유하고 있으며 업계를 선도하고 있습니다. 면책 조항 이 기사는 학술지의 참고 문헌을 기반으로 합니다. 관련 정보는 공유 및 학습 목적으로만 제공되며 의학적 조언 목적을 나타내지 않습니다. 침해 사항이 있는 경우 작성자에게 삭제 여부를 알려주시기 바랍니다. 이 기사에 표현된 견해는 BONTAC의 입장을 나타내지 않습니다. BONTAC은 어떠한 경우에도 본 웹사이트의 정보 및 자료에 대한 귀하의 의존으로 인해 직간접적으로 발생하거나 발생하는 모든 청구, 손해, 손실, 비용, 비용 또는 책임(이익 손실, 영업 중단 또는 정보 손실에 대한 직간접적인 손해를 포함하되 이에 국한되지 않음)에 대해 어떠한 책임도 지지 않습니다.
소개 세계보건기구(WHO)의 통계 보고서에 따르면 2019년 전 세계적으로 류마티스 관절염(RA)을 앓고 있는 사람은 1,800만 명이며, 여성의 유병률은 남성의 2.5배입니다. 이 장애는 환자의 삶의 질에 큰 영향을 미치며 심한 경우 장애를 일으키기도 합니다. 특히 중간엽 줄기세포 유래 엑소좀(MSCs-exo)과 진세노사이드 Rh2의 병용요법이 RA 증상 완화에 효과가 있는 것으로 밝혀져 RA 보조제로서 큰 가능성을 모으고 있습니다. RA 소개 RA는 일반적으로 중년에 발생하는 만성 자가면역 질환으로, 주로 혈관 증식, 활막 염증 및 하나 이상의 관절의 뻣뻣함/부기/변형/통증이 특징입니다. 현재 RA의 치료는 코르티코스테로이드, 비스테로이드성 항염증제, 합성 질병 조절 항류마티스 약물 및 생물학적 제제에 의존하고 있습니다. 그러나 이러한 약물을 장기간 사용하면 감염, 간 손상, 위장 손상 및 심부전과 같은 다양한 부작용이 동반될 수 있습니다. MSC 대 MSC-엑소 여러 분화 가능성이 있는 MSC는 RA의 관절 염증을 줄일 수 있습니다. 그럼에도 불구하고 면역원성, 서로 다른 세포 배치의 이질성, 종양원성 및 윤리적 문제와 같은 잠재적 위험이 있어 MSC의 적용을 제한합니다. MSCs-exo는 MSC가 분비하는 작은 세포외 소포체로, 직경이 30-150나노미터입니다. 핵산 및 소분자와 같은 생물학적 활성 물질을 운반하여 MSC의 기능을 수행할 수 있습니다. MSC에 비해 MSCs-exo는 면역원성이 낮고 종양 형성 및 윤리적 제약의 위험이 없습니다. 연구 프로토콜 콜라겐 유발 관절염(CIA) 모델을 쥐에서 구성한 후 인산염 완충 식염수를 치료하거나 MSC-엑소 및 진세노사이드 Rh2를 단일/병용 요법으로 치료합니다. 쥐 울타리는 16개의 rRNA 증폭 염기서열분석 및 비표적 대사체학 분석을 위해 수집됩니다. RA에서 진세노사이드 Rh2와 결합된 MSCs-exo의 상당한 효능 MSCs-엑소(MSCs-exo)와 진세노사이드 Rh2(ginsenoside Rh2)의 병용 요법은 관절 부종의 감소와 관절염 점수 및 발 두께의 현저한 감소로 나타난 바와 같이 CIA 모델 쥐의 RA 증상을 대체로 개선합니다. 한편, CIA 모델 쥐의 조직병리학적 변화는 명백히 개선되었다. Rh2는 CIA 모델 쥐의 활막 및 연골에서 염증 인자의 발현을 억제하는 MSC-exo의 능력을 향상시키며, 이는 TNF-α, IL-1β 및 IL-6의 하향 조절과 exo+Rh2 그룹에서 IL-10의 상향 조절에 의해 입증되었습니다. 게다가, CIA 쥐의 발목 관절의 뼈 침식이 개선되었는데, 이는 BMD와 Tb.Th 의 명백한 증가뿐만 아니라 exo+Rh2 그룹에서 BS/BV 및 Tb.Sp의 현저한 감소에 의해 입증되었습니다. RA에서 장관절 축의 필수 역할 장내 미생물군과 대사 산물은 RA 발병에 중요한 것으로 간주되어 왔습니다. 놀랍게도, MSCs-exo와 Rh2는 CIA 모델 쥐에서 교란된 장내 미생물군을 크게 개선할 수 있습니다. Candidatus_Saccharibacteria과 Clostridium_XlVb에 대한 규제가 가장 중추적인 역할을 할 수 있습니다. 구체적으로 Candidatus_Saccharibacteria는 판토텐산과 비타민 D3 변형에 의한 비타민 소화 및 흡수의 대사 경로를 조절합니다. Clostridium_XlVb의 경우, 아라키돈산 대사 경로에서 16(R)-HETE 변화를 조절합니다. 결론 MSCs-exo와 Rh2는 장내 미생물군과 대사 산물, 특히 Candidatus_Saccharibacteria과 Clostridium_XlVb 풍부함의 재형성을 조절하여 RA를 개선하기 위해 시너지 효과를 발휘합니다. 참조 Zhou Z, Li Y, Wu S 등. 인간 탯줄 중간엽 줄기 세포 엑소좀 및 진세노사이드 Rh2로 치료한 콜라겐 유발 관절염 쥐의 숙주-미생물군 상호 작용.Biomed Pharmacother. 2024년 4월 2일 온라인에 게시되었습니다. 도:10.1016/j.biopha.2024.116515 BONTAC 진세노사이드 BONTAC은 2012년부터 코엔자임 및 천연 제품의 원료 R&D, 제조 및 판매에 전념해 왔으며, 자체 소유 공장, 170개 이상의 글로벌 특허 및 강력한 R&D 팀을 보유하고 있습니다. BONTAC은 순수 원료, 더 높은 전환율 및 더 높은 함량(최대 99%)을 가진 희귀 진세노사이드 Rh2/Rg3의 생합성에 대한 풍부한 R&D 경험과 첨단 기술을 보유하고 있습니다. 면책 조항 이 기사는 학술지의 참고 문헌을 기반으로 합니다. 관련 정보는 공유 및 학습 목적으로만 제공되며 의학적 조언 목적을 나타내지 않습니다. 침해 사항이 있는 경우 작성자에게 삭제 여부를 알려주시기 바랍니다. 이 기사에 표현된 견해는 BONTAC의 입장을 나타내지 않습니다. BONTAC은 어떠한 경우에도 본 웹사이트의 정보 및 자료에 대한 귀하의 의존으로 인해 직간접적으로 발생하는 청구, 손해, 손실, 비용 또는 비용에 대해 어떠한 책임도 지지 않습니다.