NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
NMN (Nicotinamide Mononucleotide) is a substance similar to vitamin B3, which can produce NAD+ (a key metabolic intermediate) in the body. Therefore, studies have shown that NMN may help improve aging-related health issues such as metabolism, immunity, cell repair, brain health, and more.
Currently, NMN supplements are mainly used to treat the following diseases:
Aging-related metabolic disorders such as diabetes, obesity, high cholesterol, etc.
Aging-related neurodegenerative diseases, such as Alzheimer's disease.
Aging-associated immune decline.
Aging-related cardiovascular disease.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
However, these studies were small, and NMN has not been shown to be effective in clinical trials, so further research is needed to determine the effectiveness of NMN supplements.
NMN supplements may cause side effects such as upset stomach, diarrhea, and nausea. There is also research showing that NMN supplements may affect insulin sensitivity and insulin levels, so people with diabetes should consult their doctor before taking them.
NMN supplements have not yet undergone large-scale clinical trials to verify their effectiveness. Currently, research on NMN supplements is mainly focused on animal and in vitro experiments. These studies show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process.
The long-term health effects of NMN supplementation are not well studied. Existing studies mainly focus on animal and in vitro experiments, which show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process. However, the results of these studies do not represent the long-term effects of NMN on human health.
Introduction NADH (reduced form of NAD+) serves as a carrier of biological hydrogen and an electron donor, which participates in diverse physiological processes such as protein synthesis, DNA repair, insulin synthesis and secretion, immune response and cell division, playing a critical role in promoting health span and mitigating various disease states. Major enzymatic reactions in substrate metabolism that are dependent upon NAD+/NADH ratio The equilibrium of the NAD+/NADH ratio is vital for maintaining cellular reduction–oxidation (redox) homeostasis and modulating energy metabolism. Several enzymatic reactions in substrate metabolism are carried out in a NAD+/NADH ratio-dependent way. For instance, ketones suppress the increased mitochondrial production of ROS associated with excitotoxic injury by enhancing NADH oxidation (i.e. elevated NAD+/NADH ratio) in the electron transport chain, directly affecting NADH level . NADH in Krebs cycle and glycolysis NADH is produced in glycolysis and the Krebs cycle (also known as citric acid cycle or tricarboxylic acid cycle), which can transfer energy to supply ATP synthesis through the process of oxidative phosphorylation in the inner membrane of the mitochondria. Krebs cycle supplies NADH as an electron carrier to the electron transport chain in mitochondria, while glycolysis-produced NADH can be used by L-lactate dehydrogenase (LDH) or transported to the mitochondria for redox homeostasis. The effects of NADH on the mitochondria are accomplished by specialized shuttle systems (e.g., malate-aspartate or glycerol-3-phosphate). The possible strategies to modulate NADH level The main NAD/NADH biosynthetic pathways include de novo synthesis from tryptophan (TRP), synthesis from either form of vitamin B3, nicotinamide (NAM) or nicotinic acid (NA), or conversion of nicotinamide riboside (NR). Correspondingly, NADH level can be regulated by replenishing NADH precursors (eg. NR and NMN), applying NADH dehydrogenase inhibitors, having diets rich in certain nutrients (eg. vitamin B3), administrating mitochondrial targeting agents and supplementing exogenous NADH. Conclusion NADH may be a versatile therapeutic candidate by leverage of its ability to affect redox homeostasis, mitochondrial functions, and enzymatic reactions. Reference Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal. Published online February 17, 2024. doi:10.1089/ars.2023.0375 BONTAC NADH BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories and over 170 global patents including 8 NADH patents. The purity of BONTAC NADH can reach over 98%. BONTAC NADH has been widely applied in anti-aging health products, diagnostic reagent raw materials, HCY Homocysteine Test Kit, Biomedical R&D, and functional food and beverage. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction The NAD precursor nicotinamide mononucleotide (NMN) shows a beneficial effect on ageing, yet excessive NMN accumulation may lead to axon degeneration. How to make the anti-ageing effect of NMN compatible with axonal degeneration caused by NMN accumulation is still a challenge. A preliminary discussion on this issue is conducted in this study. 2. The definition and pathological changes of axonal degeneration Axonal degeneration refers to degenerative changes in the axon as a result of direct damage to the primary or as a result of diseases such as neuronal metabolic disorders, which is a common pathological change of the nervous system. The pathological changes after axonal injury include axonal swelling, fracture, retraction and atrophy. 3. The relationship between NMN and sterile alpha and TIR motif–containing 1 (SARM1) SARM1 is a multi-functional enzyme with base exchange activity, which can cleave nicotinamide adenine dinucleotide (NAD) into adenosine diphosphate ribose (ADPR), cyclic adenosine diphosphate ribose (cADPR) and nicotinamide (NAM). A substantial body of evidence mirrors that the degenerative enzyme SARM1 will be bound to and be activated by NMN. Hence, failed conversion of sufficient NMN into NAD may give rise to toxic NMN accumulation and axon degeneration. 4. The specific pathway of axon degeneration NMN only induces axon degeneration in the presence of SARM1, placing the toxic accumulation on a common pathway of axon death. Notably, nicotinamide mononucleotideadenylyltransferases (NMNATs) has a broader, compartment-specific regulatory role in SARM1 activity. For instance, NMNAT2 depletion is associated with SARM1 activation in axons. In a nutshell, NMNAT2 depletion can give rise to NMN accumulation. Next, NMN binds to and activates the pro-degenerative protein SARM1, leading to rapid NAD consumption and axon degeneration. 5. The impacts of NAD precursors upon axonal health NAD precursors are likely to be safe for most people, but there is a risk for people with compromised NMNAT activity, as these supplements could cause SARM1 activation and neurodegeneration. In healthy individuals, rapid conversion from NMN into NAD can be accomplished by NMNAT2, which is conductive to the prevention of NMN toxic accumulation and maintenance of healthy neurons and axons. Yet, downregulation of NMNAT2 level or activity may result in the upregulation of NMN, thereby leading to SARM1 activation, increased axonal vulnerability and/or axon degeneration. 6. The factors for SARM1 activity SARM1 activity is regulated by a ratio between NMN and NAD. When NMN rises, partial inhibition of SARM1 is only seen at high concentrations of NAD. Inefficient conversion of NMN into NAD because of compromised NMNAT activity is the most likely scenario in which NMN can become toxic. The change in NMN level close to the physiological concentration has a much more significant impact on SARM1 activity than NAD level. A twofold increase in NAD level is not sufficient to delay axon degeneration after injury, and even higher NAD level only temporarily delays axon degeneration. 7. The interaction between SARM1 activation and ageing effect of NMN Sub-lethal/chronic SARM1 activation could increase axonal vulnerability or have a significant impact upon NAD homeostasis and important intracellular signalling pathways in neurons.It is pivotal for life to preserve NAD homeostasis. Maintaining NAD homeostasis could be a viable anti-ageing strategy. Similarly, NMNAT2 depletion increases axon vulnerability and the level of the NMNAT2 is declined with ageing. These findings signify that SARM1 and NMNAT2 may be the key factor to reconcile the axonal degeneration caused by the accumulation of the NAD precursor NMN and ageing effect of NMN. 8. Conclusion Efficient conversion of NMN into NAD is key to preventing SARM1 activation and neurotoxicity. SARM1 and NMNAT2 may be the intersection factors between axon degeneration and anti-ageing therapy. Reference Loreto, Andrea et al. “NMN: The NAD precursor at the intersection between axon degeneration and anti-ageing therapies.” Neuroscience research vol. 197 (2023): 18-24. doi:10.1016/j.neures.2023.01.004 BONTAC NMN product features and advantages * Industrial leading technology: 15 domestic and international NMN patents * Self-owned factories and a number of international certifications to ensure high quality and stable supply of products * NMN raw material supplier of famous David Sinclair team of Harvard University Disclaimer BONTAC shall hold no responsibility for any claims arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction On January 9, 2024, the expert team of selection organizing committee from Deloitte visited BONTAC, and presented the trophy of “China Life Sciences & Healthcare Rising Star” to BONTAC on site. By virtue of its unique and innovative technology in the field of coenzymes, professional R&D team with rich experience, and excellent performance in the industry of biosynthesis, BONTAC has stood out from the crowd and won the award of "Deloitte China Life Sciences & Healthcare Rising Star". 2. 2023 Deloitte China Life Sciences & Healthcare Rising Star Since the launch of “Deloitte China Life Sciences & Healthcare Rising Star” campaign by the end of June 2023, extensive attention has been attracted by the Chinese medicine and health industry. Following verification by site visit of the enterprises, 50 enterprises with prominent comprehensive strength are finally determined to be eligible, which are subjected to rigorous review of multiple dimensions such as financial asset valuation, founding team, technical innovation, market prospect, industrial rank, etc. The awarded enterprises in this selection campaign encompass the advanced enterprise in the niche areas of life sciences and healthcare, who comprehensively display their multiple innovation achievements in the field of life sciences and healthcare. The “Deloitte China Life Sciences & Healthcare Rising Star” selection campaign is a key subproject of Deloitt on the selection project of high-tech and fast-growing enterprises, aiming to recognize and award the outstanding enterprises who take the lead in their niche areas of life sciences and healthcare and have great growth potential. 3. The candidate enterprises must meet the the following criteria: * Business headquartered within China Mainland, Hong Kong or Macao. * Own leading technology and viable business models. * Have extensive growth potential with a leading position in their niche segments. 4. Current situation on Chinese medicine and health industry The technical innovation and product quality in Chinese medicine and health industry have continuously improved, which is driven by healthcare reform policies, emerging technologies and capital markets. In China, independent innovation has penetrated into all tracks of the major health industry, which greatly promotes the research and development of domestically produced innovative medicines and medical technologies. Substantial promising innovative enterprises has emerged and gradually gained recognition in the global market, ranking among the first echelon of global technological innovation. 5. About BONTAC BONTAC is the pioneer of NMN industry and the first manufacturer to launch NMN mass production, with the first whole-enzyme catalysis technology around the world. At present, BONTAC has become the leading enterprise in niche areas of coenzyme products. Notably, BONTAC is the NMN raw material supplier of famous David Sinclair team at the Harvard University, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. Furthermore, BONTAC has the first national and the only provincial independent coenzyme engineering technology research center in Guangdong, China. The coenzyme products of BONTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. BONTAC adheres to independent innovation, with more than 160 invention patents. In the future, BONTAC will adhere to the innovation-driven concept, continue to increase investment in research and development, dig into the field of synthetic biology, and commit to developing more high-quality raw material products. At the same time, BONTAC will actively expand the international market, and work with global partners to promote the prosperous development of synthetic biology industry. In this era full of challenges and opportunities, BONTAC is confident to make greater contributions to the cause of human health.