NMNH: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues manufacturing powder. 2. Bontac is a very first manufacture in the world to produce the NMNH powder on the level of high purity, stability. 3. Exclusive “Bonpure” seven-step purification technology, high purity(up to 99%) and stability of production of NMNH powder 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products of NMNH powder 5. Provide one-stop product solution customization service
NADH: 1. Bonzyme whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive Bonpure seven-step purification technology, purity up higher than 98 % 3. Special patented process crystal form, higher stability 4. Obtained a number of international certifications to ensure high quality 5. 8 domestic and foreign NADH patents, leading the industry 6. Provide one-stop product solution customization service
NAD: 1. “Bonzyme” Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Stable supplier of 1000+ enterprises around the world 3. Unique “Bonpure” seven-step purification technology, higher product content and higher conversion rate 4. Freeze drying technology to ensure stable product quality 5. Unique crystal technology, higher product solubility 6. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products
NMN: 1. “Bonzyme”Whole-enzymatic method, environmental-friendly, no harmful solvent residues 2. Exclusive“Bonpure”seven-step purification technology, high purity(up to 99.9%) and stability 3. Industrial leading technology: 15 domestic and international NMN patents 4. Self-owned factories and obtained a number of international certifications to ensure high quality and stable supply of products 5. Multiple in vivo studies show that Bontac NMN is safe and effective 6. Provide one-stop product solution customization service 7. NMN raw material supplier of famous David Sinclair team of Harvard University
Bontac Bio-Engineering (Shenzhen) Co., Ltd. (hereafter referred to as BONTAC) is a high-tech enterprise established in July 2012. BONTAC integrates R&D, production and sales, with enzyme catalysis technology as the core and coenzyme and natural products as main products. There are six major series of products in BONTAC, involving coenzymes, natural products, sugar substitutes, cosmetics, dietary supplements and medical intermediates.
As the leader of the global NMN industry, BONTAC has the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 170 invention patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. What’s more, BONTAC has established the first coenzyme engineering technology research center at the provincial level in China which also is the sole in Guangdong Province.
In the future, BONTAC will focus on its advantages of green, low-carbon and high-value-added biosynthesis technology, and build ecological relationship with academia as well as upstream/downstream partners, continuously leading the synthetic biological industry and creating a better life for human beings.
NMN (Nicotinamide Mononucleotide) is a substance similar to vitamin B3, which can produce NAD+ (a key metabolic intermediate) in the body. Therefore, studies have shown that NMN may help improve aging-related health issues such as metabolism, immunity, cell repair, brain health, and more.
Currently, NMN supplements are mainly used to treat the following diseases:
Aging-related metabolic disorders such as diabetes, obesity, high cholesterol, etc.
Aging-related neurodegenerative diseases, such as Alzheimer's disease.
Aging-associated immune decline.
Aging-related cardiovascular disease.
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
NMN supplements are mainly used to increase NAD+ levels to improve metabolic diseases and slow down the aging process.
Improve metabolic diseases: Studies have shown that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity.
Delay the aging process: NMN can increase the vitality of cells, improve the metabolic process of cells, and delay the aging process.
Protect DNA: NAD+ is an important metabolic substance in cells and participates in various biological processes such as cellular energy metabolism and DNA repair. Supplementing NMN can increase NAD+ levels and protect DNA.
Improves Athletic Capacity: NMN has been shown to improve athletic performance and increase fat burning ability
Improve neurodegenerative diseases: Studies have shown that NMN can improve neurodegenerative diseases, such as Alzheimer's disease
However, these studies were small, and NMN has not been shown to be effective in clinical trials, so further research is needed to determine the effectiveness of NMN supplements.
NMN supplements may cause side effects such as upset stomach, diarrhea, and nausea. There is also research showing that NMN supplements may affect insulin sensitivity and insulin levels, so people with diabetes should consult their doctor before taking them.
NMN supplements have not yet undergone large-scale clinical trials to verify their effectiveness. Currently, research on NMN supplements is mainly focused on animal and in vitro experiments. These studies show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process.
The long-term health effects of NMN supplementation are not well studied. Existing studies mainly focus on animal and in vitro experiments, which show that NMN can improve the symptoms of metabolic diseases such as diabetes, fatty liver and obesity, and can delay the aging process. However, the results of these studies do not represent the long-term effects of NMN on human health.
Introduction Nicotinamide mononucleotide (NMN), one precursor of nicotinamide adenine dinucleotide (NAD+), has been ascertained to be implicated with multiple biological processes such as cellular redox regulation and metabolism as well as DNA repair. Herein, post-hoc analysis of a double-blinded clinical trial is carried out. On the premise of safety, to optimize NMN utilization, personalized dosage regimen can be developed by monitoring the NAD concentration. Research protocol A total of 80 healthy middle-aged adults (age: 40 to 65) are enrolled in the randomized, double-blinded, controlled clinical trial of NMN supplementation, who are randomly assigned into four groups and administrated with placebo or NMN (300 mg, 600 mg, or 900 mg) for 60 days. The clinical data including age, sex, body mass index (BMI), blood biological age, homeostatic model assessment for insulin resistance (HOMA-IR), blood NAD concentration, 6-minute walk test and 36-item short-form survey (SF-36), along with adverse events, are collected at baseline and after supplement, followed by comparison and correlation analysis. The association of participant clinical data at baseline and after supplement of NMN NAD concentration change (NADΔ) is dose-dependently increased post NMN supplementation, with a large coefficient of variation (29.2–113.3%) within group. Notably, only HOMA-IR has a prominent association with blood baseline NAD. As a whole, NMN supplementation has a positive impact on the physical endurance and general health conditions of healthy adults, as evidenced by the obvious improvement of six-minute walking distance, blood biological age, and SF-36 score. In addition, the increase of about 15 nmol/L in NADΔ is related to clinically improvements in the walking distance of 6-minute walk test and the SF-36 score. The safety oral dose of NMN in clinical trials As demonstrated by the registered clinical trials NCT04823260 and CTRI/2021/03/032421, NMN supplementation can boost blood NAD concentration, which is safe and well tolerated with daily oral administration of 900 mg. Strikingly, clinical efficacy expressed by blood NAD concentration and physical performance reaches highest at a dose of 600 mg daily oral intake. Conclusion Blood NAD concentration is increased by NMN supplement at a dose-dependent manner. Personalized regimen of NMN supplement should be based on the close monitoring of NAD concentration change. In addition to longer follow-up duration and large sample size, future trials on the efficacy of NMN supplement should pay much attention to the factors affecting baseline NAD concentration. Reference [1] Kuerec AH, Wang W, Yi L, et al. Towards personalized nicotinamide mononucleotide (NMN) supplementation: Nicotinamide adenine dinucleotide (NAD) concentration. Mech Ageing Dev. 2024;218:111917. doi:10.1016/j.mad.2024.111917 [2] Song Q, Zhou X, Xu K, Liu S, Zhu X, Yang J. The Safety and Antiaging Effects of Nicotinamide Mononucleotide in Human Clinical Trials: an Update. Adv Nutr. 2023;14(6):1416-1435. doi:10.1016/j.advnut.2023.08.008 BONTAC NMN As David Sinclair, a famous professor of genetics at Harvard University, once pointed out in an interview, NMN has unstable molecular structure, which is easily degraded into nicotinamide if stored in the conventional environment. The satisfactory efficacy of NMN cannot be guaranteed if the quality and purity NMN products are not high. BONTAC is the first choice of NMN raw material suppliers worldwide, who has dedicated to the manufacture of raw material for enzyme and natural products for 12 years, with self-owned factory, 173 patents and professional R&D team. The purity of BONTAC NMN can reach up to 99.5%. Also, BONTAC is the NMN raw material supplier of David Sinclair team, who uses the raw materials of BONTAC in a paper titled “Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging”. Our services and products have been highly recognized by global partners. The coenzyme products of BONTAC are widely used in fields such as nutritional health, biomedicine, medical beauty, daily chemicals and green agriculture. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. Under no circumstances will BONTAC be held responsible or liable in any way for any claims, damages, losses, expenses, costs or liabilities whatsoever (including, without limitation, any direct or indirect damages for loss of profits, business interruption or loss of information) resulting or arising directly or indirectly from your reliance on the information and material on this website.
Introduction Ginsenoside Rh2, one protopanaxadiol (PPD)-type rare ginsenoside in Panax ginseng, is uncovered to possibly have broad-spectrum pharmacological activity in diversified tumors. It is utilized as an adjuvant drug for preoperative neoadjuvant chemotherapy, postoperative adjuvant chemotherapy, and rescue treatment of advanced cancer, which has been a research hotspot in recent years. Current states on cancer therapies Cancer has emerged as the second largest cause for death across the world, with approximately 9.6 million cancer-related deaths in 2018, in accordance with the statistical report by World Health Organization (WHO). Radiotherapy, chemotherapy and surgery are the preferred option for cancer, whose efficacy is however limited by the tumor relapse and drug resistance, requiring a patch such as adjuvant drugs to fix the bug. For anticancer treatment, over 60% of the approved and pre-new drug application candidates are natural products or synthetic molecules based upon natural product molecular skeletons. Strikingly, ginsenosides act as a promising therapeutic target by virtue of its pharmacological activities such as immune adjustment, anti-tumor, anti-oxidation, and protection of the heart and cerebral vessels. 20(S) ginsenoside Rh2 vs. 20(R) ginsenoside Rh2 There are two stereoisomeric forms of ginsenoside Rh2, namely 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2. Relative to the (20R) ginsenoside Rh2, (20S) ginsenoside Rh2 has higher cytotoxic activity towards cancer cells. In a previously reported study, the half maximal inhibitory concentration values of 20(S) ginsenoside Rh2 and 20(R) ginsenoside Rh2 in A549 cells are 45.7 and 53.6 µM, respectively. The underlying mechanisms of ginsenoside Rh2 against tumor Mechanically, the anti-tumor effects of ginsenoside Rh2 are realized by enhancing the body’s immune activity to regulate microenvironment, inhibiting differentiation, angiogenesis, proliferation, invasion, and metastasis of tumor cells, inducing the apoptosis, cell cycle arrest, autophagy, superoxide and reactive oxygen species, and reversing the drug resistance via regulating a series of important tumor-related signaling pathway. For instance, ginsenoside Rh2 can activate CD4+ and CD8a+ T lymphocytes, promote their invasion, and enhance the killing effect of lymphocytes on B16-F10 melanoma cells in a concentration-dependent manner. Besides, the number of tumor cells in the G0/G1 phase is increased significantly post treatment with ginsenoside Rh2 and 5-FU, by which the expansion and migration of tumor cells are effectively hampered. Additionally, the ginsenoside Rh2 downregulates the levels of drug-resistance-related genes (eg. MRP1, MDR1, LRP and GST), making colorectal cancer cells more sensitive to 5-FU. Conclusion Ginsenoside Rh2 plays multifunctional roles in both tumor treatment and tumor microenvironment immunomodulation, which may become a promising choice of medication for patients with tumors in the future. Reference [1] Xiaodan S, Ying C. Role of ginsenoside Rh2 in tumor therapy and tumor microenvironment immunomodulation. Biomed Pharmacother. 2022;156:113912. doi:10.1016/j.biopha.2022.113912 [2] Yang L, Chen JJ, Sheng-Xian Teo B, Zhang J, Jiang M. Research Progress on the Antitumor Molecular Mechanism of Ginsenoside Rh2. Am J Chin Med. Published online January 31, 2024. doi:10.1142/S0192415X24500095 BONTAC Ginsenosides BONTAC has been dedicated to the R&D, manufacture and sale of raw materials for coenzyme and natural products since 2012, with self-owned factories, over 170 global patents as well as strong R&D team. BONTAC has rich R&D experience and advanced technology in the biosynthesis of rare ginsenosides Rh2/Rg3, with pure raw materials, higher conversion rate and higher content (up to 99%). One-stop service for customized product solution is available in BONTAC. With unique Bonzyme enzymatic synthesis technology, both S-type and R-type isomers can be accurately synthesized here, with stronger activity and precise targeting action. Our products are subjected to strict third-party self-inspection, which are worth of trustworthy. Disclaimer This article is based on the reference in the academic journal. The relevant information is provided for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC. BONTAC holds no responsibility for any claims, damages, losses, expenses, costs or liabilities resulting or arising directly or indirectly from your reliance on the information and material on this website.
1. Introduction Acute lung injury comprises a uniform response of the lung to inflammatory or chemical insults which is commonly caused by systemic illness including sepsis or trauma, infection with pathogens, and toxic gas inhalation. Sepsis-induced acute lung injury is a leading cause of morbidity and mortality worldwide, imposing substantial economic, social, and health burdens. Despite advances in knowledge of septic pulmonary pathologies over the years, efficient targeted therapies are still lacking. Notably, NMN administration has been uncovered to be effective in alleviating sepsis-induced acute lung injury, which can reduce cellular inflammation, oxidative stress, and apoptosis. 2. The impact of NMN upon macrophage polarization in LPS-induced MH-S cells In mouse alveolar macrophage cell line MH-S treated by lipopolysaccharide (LPS), NMN can facilitate the transformation of macrophages from pro-inflammatory M1 phenotype towards the anti-inflammatory M2 phenotype to promote inflammatory resolution and tissue repair, as evidenced by the downregulation of M1 phenotype-associated markers (iNOS and CD86+ F4/80+) and pro-inflammatory cytokines (IL-1β, TNF-α and IL-6) as well as the upregulation of M2 phenotype-related markers (Arg1 and CD86+ F4/80+) and anti-inflammatory mediators (IL-10) post NMN administration. 3. The alleviation of LPS-induced lung injury post NMN administration In vitro, NMN represses the apoptosis and production of pro-inflammatory factors in LPS-stimulated MH-S cells. In vivo, NMN explicitly ameliorates LPS-induced pathological alterations, encompassing thickened alveolar wall, inflammatory cell infiltration, septa swelling, and erythrocyte exudation, in a murine septic model. 4. The association of SIRT1/NF-κB signaling activation with NMN-mediated macrophage polarization SIRT1/NF-κB signaling pathway is involved in the lung protection of NMN, as manifested by the elevated expression of SIRT1 as well as the reduced acetylation and phosphorylation of NF-κB-p65 post NMN treatment. Repression of SIRT1/NF-κB signaling offsets NMN-mediated M2 macrophage polarization. SIRT1 inhibitor EX-527 decreases the expression of SIRT1, yet increases the expression of acetylated and phosphorylated NF-κB-p65 in septic mice pretreated with NMN. In contrast to NMN, EX-527 overtly promotes the expression levels of M1 macrophage-associated markers (iNOS and CD86) while inhibiting those of M2 phenotype-related markers (Arg1 and CD206). 5. Conclusion NMN can effectively ameliorate LPS-induced acute lung injury through modulating macrophage polarization via SIRT1/NF-κB signalling pathway, providing a novel therapeutic direction for sepsis-induced acute lung injury. 6. Reference He, Simeng et al. “Nicotinamide mononucleotide alleviates endotoxin-induced acute lung injury by modulating macrophage polarization via the SIRT1/NF-κB pathway.” Pharmaceutical biology vol. 62,1 (2024): 22-32. doi:10.1080/13880209.2023.2292256 BONTAC NMN BONTAC is the leader of the global NMN industry, with the first whole-enzyme catalysis technology in China. Our coenzyme products are widely used in health industry, medical & beauty, green agriculture, biomedicine and other fields. BONTAC adheres to independent innovation, with more than 160 invention patents including 15 NMN patents. Different from the traditional chemical synthesis and fermentation industry, BONTAC has advantages of green low-carbon and high-value-added biosynthesis technology. Both the high-quality product and excellent service can be better ensured in BONTA. BONTAC has 12 years of industry experience, which is worthy of your trust. Disclaimer This article is based on the reference in the academic journal. The relevant information is provide for sharing and learning purposes only, and does not represent any medical advice purposes. If there is any infringement, please contact the author for deletion. The views expressed in this article do not represent the position of BONTAC.